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ABSTRACT

The dynamic behavior of a reconfigurable adaptive truss struc-
ture with nonlinear joints is investigated. The objective is to ex-

perimentally examine the effects of the local nonlinearities on the

global dynamics of the structure. Amplitude changes in the fre-

quency response functions are measured at micron levels of mo-
tion. The amplitude and frequency variations of a number of

modes indicate a nonlinear Coulomb friction response. Hysteretic

bifurcation behavior is also measured at an amplitude approxi-

mately equal to the specified freeplay in the joint. Under the lg

preload, however, the nonlinearity was dominantly characteristic
of Coulomb friction with little evidence of freeplay stiffening.

INTRODUCTION

Future small spacecraft structures must be designed to be de-

ployed while retaining the structural rigidity necessary for preci-
sion instrumentation. In contrast with most erectable spacecraft

structures which have been investigated over the past fifteen years,

small, compact structures are complex, nonlinear, time-variable

dynamical systems. To successfully control the dynamics of these
structures, it will be necessary to obtain high fidelity models based

on ground test experiments. Unfortunately, there is little experi-

ence with system identification methods which are successful for

nonlinear, time-varying structures. Furthermore, little is known
about the confidence with which these structures can be modeled

using existing finite element codes.

Examples of precision deployable structure concepts were as-
sembled by Mikulas and Withnell [1]. Effective design of this

type of structure will require a more thorough experimental back-

ground in deployable structural dynamics with a particular focus

on nonlinear joint behavior.
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Previous research in nonlinear joint effects on space structure

dynamics included examinations of modal coupling effects (Sarver
and Crawley [2]), and attempts to develop equivalent beam finite

element models using an equivalent energy approach (Webster and

Velde [3]). Bowden [4] examined the effects of a number of sim-

ple nonlinear joint models of on global beam and truss dynamics.

Tests on deployable, erectable, and rotary modules in the Mid-

deck 0-gravity Dynamics Experiment (MODE) provided data on
nonlinear variations in frequency, amplitude, and damping as func-

tions of input amplitude, suspension stiffness, and preload [5]. A

primai_:_nclusion from this testing was a general rule of one per-

cent variance in the experimental determination of frequency and

one-half percent error in that of damping for testing of this type of

structure.

A significant difference between the MODE test structures and
the batten actuated truss (BAT) being studied here is the shapes of

the lowest modes of the structures. The beam-like behavior of the

MODE test structures fails to exemplify the unique dynamic dis-

placements whichresult from the variety of geometries found in

more Cbm_td_loyable structures Such as precision reflectors

and BAT7 Unfortunately, the strong dependence of the dynamics

of these structures on local displacements serves to increase the in-
fluence of local sources of nonlinearity on the global dynamics.

Initial results from force-state mapping experimentation on the

pin-clevis joints used in BAT have revealed extremely complex be-

havior[6]. As a result, accurate modeling of these elements may re-

quire multiple degrees of freedom in addition to nonlinear
considerations.

The experiment was organized as follows. Initially, multiple

modal surveys of the structure are performed across the structure's

deployment range. Then, to obtain piecewise constant models of
the structure, the data was modeled by the Eigensystem Realization

Algorithm (ERA) [7] as well as the Common Basis-normalized

Structural Identification (CBSI) procedure [8]. These results were

then compared with the predictions of a NASTRAN finite element

model. In addition, a study of phase plane responses of the struc-

ture as a function of input amplitude and frequency is performed.
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THE BATTEN-ACTUATED TRUSS

Our experiments were performed on the batten actuated de-

ployable truss depicted in Figures 1-4. Six screw jack actuators

driven by 0.52 lb motors control the motion from the packaged

to fully deployed state. By independently changing the length of
the screw jack actuators, the truss can be-reconfigured with three

degrees of freedom. The bearings and all mechanism compo-
nents of this structure are preloaded by opposing springs to elim-

inate backlash and freeplay in the structure. As a result, it is a

precision, reconfigurable adaptive truss capable of erectable

structure precision. Throughout these tests, the truss was canti-

levered from a backstop with two linear bearing connections al-

lowing deployment.

Input Location I

(for all 4 states) |

Figure 1: Reconfigurable Truss in Deployed State

Stainless steel and aluminum pin-clevis hinges with bronze

fittings connect the members. These nodes are the primary
source of nonlinearity in the structure. The truss members are

connected to the hinges with a shoulder bolt mounted to the

hinge and a compression nut that clamps the member and shoul-

der bolt together. It should be noted that these hinge-member

connections are identical to those used in other highly linear

erectable truss hardware and most likely did not contribute to the
observed nonlinear behavior.
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Figure 3: Batten Actuated Deployment

I

Figure 2: Photograph of Reconfigurable Truss in Deployed State Figure 4: Photograph of Reconfigurable Truss in Half Deployed
State
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MODELING

Finite element models of the structure were created in MSC/

NASTRAN [9] for each of the four tested deployment states.

The models consisted solely of linear CBAR, RBAR, and point

mass elements assembled to accurately represent the geometry

of the structure. Each member was meshed into five CBAR ele-
ments and the inertial contributions-of the motors were modeled

as point masses offset from the appropriate nodes. The pin-cle-

vis joints were modeled as y rotational degrees of freedom con-

nections to the appropriate members. These connections were
offset from the node centers by rigid members.

SYSTEM IDENTIFICATION PROCEDURE

Experimental Procedure

An initial bandwidth of interest of 0-200Hz was selected and

testing was performed at a 500 Hz sample rate to provide a safe

Nyquist value. The high bandwidth is necessary to obtain high

fidelity identified models for use in control, but increases the ef-

fect of dynamic nonlinearity on the identification. A pseudo

burst-random input signal was used across 80% of a sixteen sec-

ond window. Expecting nonlinear response characteristics, the

test case matrix included four approximately logarithmically

separated input amplitudes.

Sets of 300 trials were performed for each input amplitude at

four equally spaced stages of deployment. The spectral data

from these trials was averaged for each case to reduce the stan-
dard deviation of the data.

Along with collocated force and acceleration measurements

at the input location, tri-axial acceleration measurements were

made at each of the nodes. Additional pairs of vertically oriented

accelerometers were located on the motorized joints to capture

the "rocking" behavior of the joints depicted later. These led to

a total of 54 acceleration output channels.

Data Analysis Procedure

Frequency response functions were generated for individual

input-output pairs for each input amplitude. This data was then

compared between deployment state cases.

The pseudo burst random FRFs were then curve fit using the

time domain ERA system identification technique. The ERA
Hankel matrix had 40 block rows and 1000 block columns. The

choice of the number of block rows meant that the first 0.08 sec-

onds of each impulse response was used, ensuring that at least

two full periods of the lowest mode of interest was used in the
identification. The number of block columns was as large as fea-

sible given computation time constraints.

These specifications were applied to identification proce-
dures for models of order 300 to 20 to examine the sensitivity of

the modal parameters of interest to the truncation order of the

model. The results proved to be fairly consistent for models with

80 to 20 degrees of freedom. A statistical analysis of this data

was then performed to quantify the amount of error expected

from the model and assure that it was sufficiently less then the

trends that were being observed. Trends in the identified modal

frequencies and damping ratios as input amplitude increased are

then examined for a pair of consistently identified modes.

PHASE PLANE RESPONSE INVESTIGATION PRO-
CEDURE

Although pseudo burst-random is a common modal excita-

tion waveform for a full bandwidth survey, it can mask the ef-

fects of nonlinearity. Consequently, we also investigated sine
dwell resonance tests to examine the nonlinear boundaries of a

number of modes.

This portion of the investigation was performed in a manner

similar to the modal survey with the input provided by the shaker

and outputs by the collocated input and output force and acceler-

ation transducers used in the initial testing. A constant sinusoi-

dal input was provided by a waveform generator. The phase

plane response of the collocated input-output transfer function
was then examined on an oscilloscope. In this manner, depen-

dence of the phase plane response of the structure was measured

as a function of input amplitude at a variety of modal resonance

frequencies.

RESULTS

Linear Vibration

Some modal predictions from the finite element model are

presented in Table 1. The initially surprising result was that the

model predicts a softer response from the fully deployed state of

the structure. This is more easily understood once one considers

the shapes of the modes developed by the model (see Figures 5

& 6). From these shapes, we notice that the greatest deflections

of the structure occur with rotations of the mid-plane nodes al-

lowing a pin-pin deflection shape of the screw-jack members.

There is little torsional stiffness in the y direction about these

nodes due to the degrees of freedom of all of the pin-clevis joints

removing the y direction torsional stiffness contributions of the
connected members. This lack of stiffness leads to the shapes of

the first few lowest modes with larger deflections developing in

the rightmost batten plane for the following modes.
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Mode

#

Table I: Modeled and Measured Modal Frequencies

Frequency (Hz)

Half Deployment
!

Modeled Measured [ Error

39.0 31.4 [ +7.6

45.4 42.1 +3.3

52.5 46.7 +5.8

Full Deployment

Modeled Measured

37.8 42.7

39.7 44.8

50.2 53.0

Error

-4.9

-5.1

-2.8

The result of this is that the shortening of the screw-jack mem-

bers at half deployment serves to stiffen the softest point in the

structure. Therefore, even with the weaker geometry of the half-de-

ployed configuration, the overall stiffness of the structure is in-

creased. These extreme node rotations are examples of the atypical

low frequency displacements to be found in compact deployable

structures.

"b

Figure 5: First Mode of Half Deployed Structure
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Figure 6: First Mode of Fully Deployed Structure

One of the first areas to be analyzed in the frequency response

of the structure was the accuracy of the predicted stiffening of the

structure at half deployment. In Table 1, we see that this is not sup-

ported by the modal test results. Also, in Figure 7, we observe a

general softening in the measured response of the structure from

full to half deployment. Evidence for this softening includes de-

creases in the frequencies of the lowest modes as well as increases

in their amplitudes. Possible explanations for the inaccuracy of the

models include the complexity of the geometry of the structure as

well as failure to include the nonlinear behavior of the joints in the

models.
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Figure 7: FRFs of Fully Deployed and Half Deployed Structure
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Nonlinear Results

Figure 8 displays the frequency responses of the fully de-

ployed structure for all four input amplitudes. Comparison of
these responses provides immediate evidence of the high level of

nonlinearity in the structure. Trends to be observed include vary-

ing amounts of softening (reduced frequency), increased damp-

ing, and decreasing response amplitudes as input amplitude is
increased. As seen in Bowden's study of fundamental nonlinear

joint models [4], decreasing modal frequencies following in-

creasing input amplitude are characteristic of a Coulomb friction
nonlinearity. This is in contrast to the nature of joint freeplay dy-

namics acting to stiffen the dynamic response as input amplitude

is increased.

In order to quantify the frequency and damping variations

across all of the inputs, it was necessary to focus on modes that

were best identified. This was a result of the highly nonlinear re-

sponse for the highest input amplitude. Even allowing this, the
identification algorithm was able to regularly identify only one
of the selected modes for the highest input amplitude case. The

mean identified modal parameter values for model sizes from 20

to 80 degrees of freedom is presented in Table 2 and in Figures

9 and 10.

The identified modal frequencies decreased by up to 2.7Hz

from the lowest to highest input amplitudes for the two selected

modes. This variation was a nearly linear function of the input

amplitude. The identified frequencies for mode A decreased at
a rate of about 0.22 Hz/N, while mode B decreased at about 0.53

Hz/N.

As seen in Figure 10, identified damping ratios for the two

modes revealed a slightly less consistent linear dependence on

input amplitude. While the identified damping ratio for mode A

decreased slightly initially, both modes eventually experienced

approximately a 140% increase in damping from the lowest to

highest input amplitudes.

In an attempt to better understand the dynamic displacements
of the structure, the displacements involved in these modes were

simulated by the model identification software. The motion of

the measured points resembled global bending modes for modes

A and B.
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Figure 8: FRFs of Fully Deployed Structure for Multiple Input
Amplitudes
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Figure 9: FRFs of Fully Deployed Structure for Multiple Input
Amplitudes (Amplification of examined Modes A and B)

Table 2: Trends in Modal Parameters

Input Amplitude(N) Mode A I Mode B '

.co(Hz) _ (%) o_(Hz) / _ (%)
83.7 1.15

0.89

2.23

4.45

13.3

86.0 1.17

85.7 0.97

84.8 1. I I

83.28 2.83

82.7 1.75

81.8 2.90

NA I NA
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Figure 10: Modal Parameter Variations for Multiple Input Am-
plitudes

Phase Plane Rdlll_nse Investigation Results

Figure 11 displays a typical series of scans of the acceleration

vs. input force phase plots. As can be seen from the equally

scaled images, the shift into the obviously nonlinear state occurs

over a relatively short increase in input amplitude. This bifurca-

tion of resonance states was observed across the spectrum at

varying levels of input amplitude.

Also noted during this part of the study was a hysteretic state

path as a function of both input amplitude and frequency. This

action was seen as the bifurcation would occur at one input am-

plitude as the amplitude was increased while the system would

return to the previous state at a lower input amplitude as it was

decreased. This hysteretic behavior also occurred upon increas-

ing and decreasing the input frequency while the input amplitude

was held constant.

During this experimentation, the question arose as to at what

amplitudes these bifurcations were occurring at. The specifica-

tions for the pin-clevis joint parts suggested that free-play in the

joints might occur near 15 I.tm. Recording the acceleration at

which these bifurcations occurred at 5Hz intervals across the

spectrum allowed calculation of the maximum displacement of

the structure at these points. Figure 12 portrays the results of this

nonlinear boundary survey. These values proved to be repeat-

able to within +4gtm, but no correlation was evident between this

boundary and the frequency response of the structure. Figure 11: Phase Plane Bifurcation (Input force along the hori-
zontal axes and acceleration along the vertical axes)
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Figure 12: Map of the Nonlinear Boundary at Different Reso-
nances
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CONCLUSIONS

Modal displacements of the structure predicted by the finite

element model portrayed unique mode shapes that are to be ex-

pected from such a compact deployable structure. The depen-

dency of the dynamics of the structure on local displacements
increased the influence of the nonlinear joint connections on the

global response of the structure. Input amplitude dependent
variations of modal frequencies and damping ratios indicated a
dominance of nonlinear Coulomb friction. However, an exami-

nation of the phase plane response of the structure as input am-

plitude was increased revealed a hysteretic bifurcation of

resonance states at a micron displacement level near the freeplay

of the joints. The dominance of the Coulomb friction character-

istics is most likely a result of the gravitational preioading of the

joints increasing the friction while reducing the freeplay me-
chanics.

Further study of the structure under a different preloading
condition is recommended for a better understanding of its influ-

ence. An attempt to model the structure with nonlinear consid-
erations included is also recommended in order to determine the

limits of our modeling accuracy.
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